FTLF1436W5BTD # 25G Ethernet RoHS Compliant Long Wavelength SFP28 Transceiver FTLF1436W5BTD SFP28 transceivers are designed for use in Ethernet links up to 25.78 Gb/s data rate and up to 300m link length. They are compliant SFF-8472 Rev 12.2b, and compatible with SFF-8432a and applicable portions of SFF-8431 Rev. 3.0c. The product is RoHS compliant and lead-free per Directive 2011/96/EUd. See Finisar Application Note AN-2038 for more details. # **FEATURES** - Up to 25.78 Gb/s bi-directional data links - Hot-pluggable SFP+ footprint - Built-in digital diagnostic functions - 1310nm DFB laser transmitter - Duplex LC connector - RoHS compliant - Up to 300m on 9/125μm SMF - Metal enclosure, for lower EMI - 1.5W maximum power consumption with established link - Single 3.3V power supply - Operating temperature range: -40°C to 85°C # **APPLICATIONS** - 25GE - eCPRI & CPRI ### **Product Selection** # FTLF1436W5BTD # I. Pin Descriptions Diagram of Host Board Connector Block Pin Numbers and Names | Pin | Symbol | Name/Description | Notes | |-----|--------------------|--|-------| | 1 | V _{EET} | Transmitter Ground (Common with Receiver Ground) | 1 | | 2 | T _{FAULT} | Transmitter Fault. | 2 | | 3 | T _{DIS} | Transmitter Disable. Laser output disabled on high or open. | 3 | | 4 | SDA | 2-wire Serial Interface Data Line (MOD-DEF2) | 4 | | 5 | SCL | 2-wire Serial Interface Clock (MOD-DEF1) | 4 | | 6 | MOD_ABS | Module Absent, connected to V _{EET} or V _{EER} | 4 | | 7 | RS0 | Rx Rate Select: Open or Low = 10.3 Gb/s or 9.8Gb/s (Low Bandwidth) High = 25.78 Gb/s or 24.33Gb/s (High Bandwidth) | 5 | | 8 | RX_LOS | Loss of Signal indication. Logic 0 indicates normal operation. | 6 | | 9 | RS1 | Tx Rate Select: Open or Low = 10.3 Gb/s or 9.8Gb/s (Low Bandwidth) High = 25.78 Gb/s or 24.33Gb/s (High Bandwidth) | 5 | | 10 | V _{EER} | Receiver Ground (Common with Transmitter Ground) | 1 | | 11 | V _{EER} | Receiver Ground (Common with Transmitter Ground) | 1 | | 12 | RD- | Receiver Inverted DATA out. AC Coupled | | | 13 | RD+ | Receiver Non-inverted DATA out. AC Coupled | | | 14 | V _{EER} | Receiver Ground (Common with Transmitter Ground) | 1 | | 15 | V _{CCR} | Receiver Power Supply | | | 16 | V _{CCT} | Transmitter Power Supply | | | 17 | V _{EET} | Transmitter Ground (Common with Receiver Ground) | 1 | | 18 | TD+ | Transmitter Non-Inverted DATA in. AC Coupled. | | | 19 | TD- | Transmitter Inverted DATA in. AC Coupled. | | | 20 | V _{EET} | Transmitter Ground (Common with Receiver Ground) | 1 | #### Notes - Circuit ground is internally isolated from chassis ground. 1. - T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V. - Laser output disabled on T_{DIS} >2.0V or open, enabled on T_{DIS} <0.8V. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in. - Rate select can also be set through the 2-wire bus in accordance with SFF-8472 v. 12.1°. Rx Rate Select is set at Bit 3, Byte 110, Address A2h. Tx Rate Select is set at Bit 3, Byte 118, Address A2h. Note: writing a "1" selects maximum bandwidth operation. Rate select is the logic OR of the input state of Rate Select Pin and 2-wire bus. - LOS is open collector output. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. ### **II. Absolute Maximum Ratings** | Parameter | Symbol | Min | Тур | Max | Unit | Ref. | |------------------------------------|----------------|------|-----|-----|------|------| | Maximum Supply Voltage | Vcc | -0.5 | | 4.0 | V | | | Storage Temperature | T _s | -40 | | 85 | °C | | | Case Operating Temperature | T _c | -40 | | 85 | °C | | | Relative Humidity (Non-condensing) | RH | 0 | | 85 | % | 1 | #### Notes: Non-condensing. # III. Electrical Characteristics (T_A , V_{cc} = 3.15 to 3.46 Volts) | Parameter | Symbol | Min | Тур | Max | Unit | Ref. | |--------------------------------|------------------------|------|-----|---------------------|------|------| | Supply Voltage | Vcc | 3.15 | | 3.46 | V | | | Supply Current | Icc | | | 433 | mA | 1 | | Transmitter | | | | | | | | Input differential impedance | R _{in} | | 100 | | Ω | 2 | | Single-ended data input swing | Vin,pp | 125 | | 450 | mV | 3 | | Inner Eye Height (@ 25.78Gb/s) | EH6 | 95 | | | mV | 3 | | Transmit Disable Voltage | V _D | 2 | | Vcc | V | 4 | | Transmit Enable Voltage | V _{EN} | Vee | | Vee+0.8 | V | | | Receiver | | | | | | | | Single ended data output swing | Vout,pp | 185 | | 425 | mV | 5 | | LOS Fault | V _{LOS fault} | 2 | | Vcc _{HOST} | V | 6 | | LOS Normal | V _{LOS norm} | Vee | | Vee+0.8 | V | 6 | | Power Supply Rejection | PSR | 100 | | | mVpp | 7 | #### Notes: - 1. With established link. - 2. Connected directly to TX data input pins. AC coupling from pins into laser driver IC. - 3. The minimum value represents the minimum outer eye amplitude. Inner Eye Height represent the high loss case. - 4. Or open circuit. - 5. Into 100 ohms differential termination. - 6. LOS is an open collector output. Should be pulled up with 4.7k 10kohms on the host board. Normal operation is logic 0; loss of signal is logic 1. Maximum pull-up voltage is 5.5V. - 7. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network. # IV. Optical Characteristics ($T_AV_{CC3} = 3.15$ to 3.46 Volts) | Parameter | Symbol | Min | Тур | Max | Unit | Ref. | |---|-----------------------|-------|-----------------|----------------|-------|---------| | Transmitter | | | | | | | | Average Output Power,25.78Gb/s or 24.33Gb/s | P _{out} | -6.8 | | 2.0 | dBm | 1, 2, 3 | | Optical Wavelength | λ | 1260 | 1310 | 1360 | nm | | | Spectral Width (-20dB) | σ | | | 1 | nm | | | Sidemode Supression ratio | SMSR | 30 | | | dB | | | Optical Modulation Amplitude, 25.78Gb/s or 24.33Gb/s | OMA | -6 | | 2.2 | dBm | | | Launch Power in OMA-TDP (min) | | -7 | | | dB | | | Transmitter Dispersion Penalty,
25.78Gb/s or 24.33Gb/s | TDP | | | 3.5 | dB | | | Extinction Ratio | ER | 2.5 | | | dB | | | Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3} | | 0.35, | 0.44, 0.47, 0.3 | 35, 0.35, 0.56 | | 4 | | Relative Intensity Noise | RIN ₂₀ OMA | | | -130 | dB/Hz | | | Transmitter Return Loss | | | | 26 | dB | | | Average Launch Power of OFF Transmitter | | | | -30 | dBm | | | Optical Return Loss tolerance | | | | 20 | dB | | | Receiver | | | | | | | | Unstressed Receiver OMA Sensitivity, 25.78Gb/s or 24.33Gb/s | RxSENS | | | -10.5 | dBm | 5 | | Maximum Receiver Power OMA | | | | 2.2 | dBm | | | Average Receiver Power
25.78Gb/s or 24.33Gb/s | Rx _{MAX} | -10.3 | | 2.0 | dBm | 3. 5 | | Damage threshold | | 3 | | | dBm | | | Optical Center Wavelength | λ _c | 1260 | | 1370 | nm | | | LOS De-Assert | LOS _D | | | -14 | dBm | | | LOS Assert | LOS _A | -27 | | | dBm | | | LOS Hysteresis | | 0.5 | | | dB | | | Receiver Reflectance | | | | -26 | dB | | #### Notes - 1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations. - 2. High Bandwidth Mode. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations. - 3. For information only - 4. Hit ratio 5E-5 hits per sample - 5. Test at 25.78Gb/s $5E^{-5}$ BER, per IEEE802.3cc ### V. General Specifications | Parameter | Symbol | Min | Тур | Max | Unit | Ref. | |--|--------|-----|-------|------|--------|------| | Data Rate | BR | | 25.78 | | Gb/sec | | | Bit Error Rate
25.78Gb/s or 24.33Gb/s | BER | | | 5E-5 | | 1, 2 | | Fiber Length | L | | | 300 | m | 3 | #### Notes: - 1. Tested with a PRBS 231-1 test pattern @ 25.78Gb/s. - 2. 9.8304G, 10.1376G and 10.3125G with CDR bypass. - 3. Distances are based on G.652 fiber. # VII. Environmental Specifications | Environmental Specifications | Symbol | Min | Тур | Max | Units | Ref. | |------------------------------|------------------|-----|-----|-----|-------|------| | Case Operating Temperature | T _{op} | -40 | | 85 | °C | | | Storage Temperature | T _{sto} | -40 | | 85 | °C | | # **VII. Regulatory Compliance** Finisar transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified by TÜV and CSA to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available at Finisar Corporation upon request. #### **VIII. Digital Diagnostic Functions** Finisar FTLF1436W5BTD SFP28 transceivers support the 2-wire serial communication protocol as defined in the SFP MSA°. It is very closely related to the E²PROM defined in the GBIC standard, with the same electrical specifications. The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information. Additionally, Finisar SFP transceivers provide a enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range. The SFP MSA defines a 256-byte memory map in E²PROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement. The complete interface is described in Finisar Application Note AN-2030: "Digital Diagnostics Monitoring Interface for SFP Optical Transceivers". The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E²PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. For more information, please see the SFP MSA documentatione and Finisar Application Note AN-2030. ### **TX Equalization Control** Tx input equalization control can be accessed through 2-wire serial interface at byte address 114 (A2h). Tx input equalization control for 25GE is located at the upper 4 bits of byte 114 (A2h) while the lower 4 bits are reserved for rate low in the case of dual rate application. #### **RX Emphasis Control** Rx output emphasis control can be accessed through 2-wire serial interface at byte address 115 (A2h). Rx output emphasis control for 25GE is located at the upper 4 bits of byte 115 (A2h) while the lower 4 bits are reserved for rate low in the case of dual rate application. # IX. Digital Diagnostic Specifications FTLF1436W5BTD transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics. | Parameter | Symbol | Units | Min | Max | Accuracy | Ref. | |--------------------------------------|-------------------------|-------|------|------|----------|------| | Transceiver Temperature | D _{DDTemp} | °C | -40 | +85 | ±5°C | | | Transceiver Supply Voltage | D _{DDVoltage} | V | 3.15 | 3.45 | ±3% | | | Transmitter Bias Current | D _{DDBias} | mA | 0 | 80 | ±10% | 1 | | Transmitter Output Power | D _{DDTx-Power} | dBm | -7 | +3 | ±3dB | | | Receiver Average Optical Input Power | D _{DDRx-Power} | dBm | -11 | +3 | ±3dB | | Notes: # X. Mechanical Specifications Finisar's FTLF1436W5BTD SFP28 transceivers are compatible with the SFF-8432b specification for improved pluggable form factor. FTLF1436W5BTD ^{1.} Accuracy of Measured Tx Bias Current is 10% of the actual Bias Current from the laser driver to the laser. # XI. PCB Layout and Bezel Recommendations <u>∕</u><u>Ag</u>tum and Basic Dimension Established by Customer ∕<u>Ag</u>ads and Vias are Chassis Ground, 11 Places ∕<u>Ag</u>Through Holes are Unplated #### NOTES: ⚠ MINIMUM PITCH ILLUSTRATED, ENGLISH DIMENSIONS ARE FOR REFERENCE ONLY 2. NOT RECOMMENDED FOR PCI EXPANSION CARD APPLICATIONS #### XII. References - a. "Improved Pluggable Form Factor", SFF Document Number SFF-8432, Revision 5.0, July 16, 2007. - b. "Digital Monitoring Interface for Optical Transceivers", SFF Document Number SFF-8472, Revision 12.2, 2014. - c. "Enhanced Small Form Factor Pluggable Module 'SFP+ '", SFF Document Number SFF-8431, Revision 4.1, July 6, 2009; Addendum Jun 21, 2013. - d. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment". 08-June 2011, which supercedes the previous ROHS Directive 2002/95/EC. - e. Small Form Factor Pluggable (SFP) Transceiver Multi-source Agreement (MSA), September 14, 2000 which is available as SFF Document Number INF-8074, Revision 1.0 May 12, 2001 - f. "0.8mm Card Edge Connector for 16Gb/s Applications", SFF Document Number SFF-8081, Revision 0.2, December 21, 2009. - g. SFF-8402, Revision 0.2