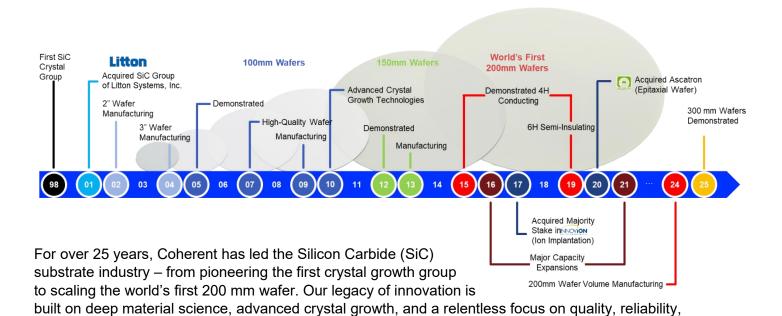

SILICON CARBIDE (SIC) MATERIALS

WHERE INNOVATION MEETS PARTNERSHIP

Coherent's Silicon Carbide (SiC) substrates and epitaxial wafers lay the foundation for the future – combining high thermal conductivity, high breakdown voltage, and wide-bandgap performance into a single, scalable platform.

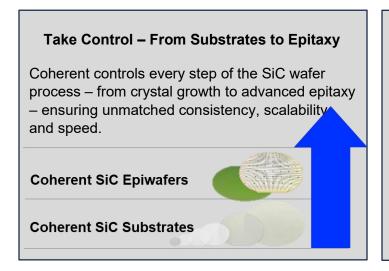
From the crystal structure to the system level, our materials enable the development of compact, high-voltage, and energy-efficient devices for electric vehicles, renewable energy, and next-generation industrial applications.

FEATURES


- Silicon Carbide (SiC) substrates
- Silicon Carbide (SiC) epitaxial wafers

APPLICATIONS

- Electric vehicles and ultra-fast charging
- Renewable energy (solar and wind) inverters
- Smart grid power switching
- Industrial motor drives
- Telecom and data infrastructure



SIC SUBSTRATES: 25+ YEARS OF RELIABLE FOUNDATION

As the demands on power systems grow – higher voltages, smaller footprints, and great efficiency – Coherent's substrates provide the crystal-clear foundation to enable it all.

SIC EPIWAFERS: DRIVING THE NEXT GENERATION FORWARD

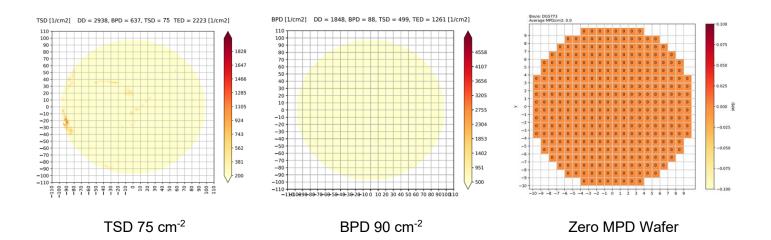
What Sets Our Epitaxy Apart

- Suitable for large area devices
- Optimized substrates and epi processes for higher quality and cost-effective performance
- Record-low defectivity enabled by advanced buffer-layer technology
- 99.9 % BPD-to-TED conversion rate resulting in < 0.1 BPD/cm²
- Thickness uniformity < 2 %
- Doping uniformity < 3%

Building on decades of substrate expertise, Coherent's epitaxial wafers extend our leadership into advanced epitaxy, combining process control with scalable 150 mm and 200 mm manufacturing – enabling next-generation power devices for cleaner energy, smarter mobility, and more efficient industries.

and scale.

ENGINEERED TO YOUR SPECIFICATIONS

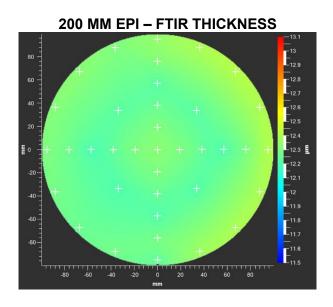

N-TYPE AND SI SIC SUBSTRATES

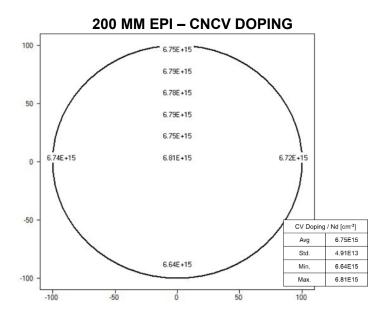
Typical Properties	N-Type Substrates		SI Substrates	
Polytype	4H	4H	4H	6H
Diameter (mm)	150	200	100, 15	50, 200
Thickness (µm)	350	350	50	00
Thermal Conductivity (W/mK)	370			
Dopant	Nitro	trogen Vanadium		ıdium
Resistivity (Ω·cm)	0.02	0.02	> 1E+11	
Dislocation Density (cm ⁻²)	3,000	3,000	5,000	10,000
Threading Screw Dislocation (TSD) Density (cm ⁻²)	300	300	1,000	3,000
Basal Plane Dislocation (BPD) Density (cm ⁻²)	700	400	N/A	N/A
Micropipe Density (cm ⁻²)	0.01	0.04	0.05	0.5
Warp (µm)	3	4	8	8
Stacking Fault (%)	0	0	0	0

Specifications can be customized upon request

200 MM QUALITY

Defects	Best in Class	CY27 Typical
TSD (cm ⁻²)	75	100
BPD (cm ⁻²)	90	250
MPD (cm ⁻²)	0	0

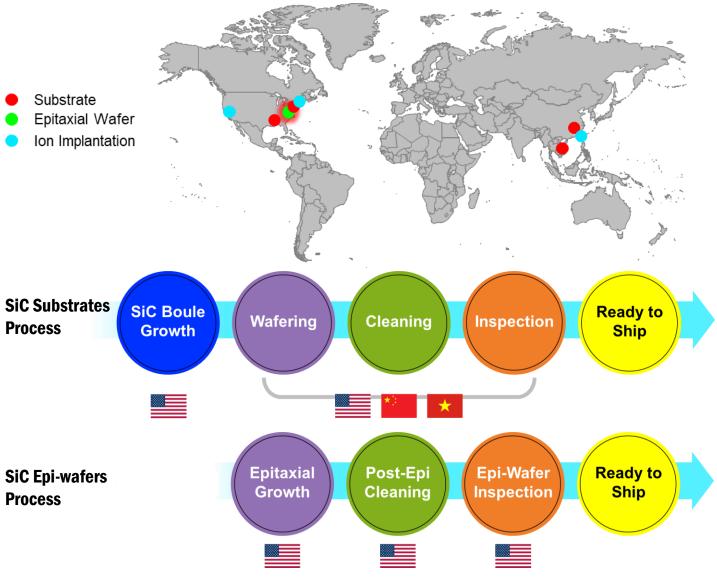

ENGINEERED TO YOUR SPECIFICATIONS


N-TYPE SIC EPITAXIAL WAFERS

Key Properties		
Wafer Size (mm)	150, 200	
Polytype	4H	
N-Doping (cm ⁻³)	$10^{14} - 10^{19}$	
Thickness (µm)	0.5 – 250	

Standard Specifications	
N-Type (µm)	5 – 60
Thickness Tolerance	± 10 %/target
Thickness Uniformity	2 % σ/mean
Doping Tolerance	± 15 %/target
Doping Uniformity	3 % σ/mean

Specifications can be customized upon request


Dia.	FTIR Thickness	Uniformity		
(mm)	(Avg. µm)	(% Std.Dev/mean)		
200	12.1	0.4 %		

Dia.	Doping Measured	Uniformity
(mm)	(Avg. cm ⁻³)	(% Std.Dev/mean)
200	6.75E15	0.7 %

GLOBAL REACH, LOCAL COMMITMENT

Pine Brook NJ, USA	Easton PA, USA	Starkville MS, USA	Fuzhou China	Dong Nai Vietnam	San Jose, CA Hsinchu, TW Wilmington, MA
SiC Substrates	SiC Substrates SiC Epi-wafer	Backend SiC Wafer Processing	Backend SiC Wafer Processing	Backend SiC Wafer Processing	Ion Implantation Service

COMPLETE SIC SOLUTIONS FOR PERFORMANCE & SCALE

EPITAXIAL WAFER

- 20+ yr growth expertise
- Low defect density
- 6-inch / 8-inch scalable

"Foundation for Reliable High-Voltage Devices"

- Excellent uniformity
- Yield-driven epitaxy
- High-volume capacity

"Enabling
Higher Yield for
Automotive & Energy"

- Multi-material capacity
- Extended lifetime
- Particle reduction

"Driving
Cost Efficiency &
Sustainability"

WHERE INNOVATION MEETS PARTNERSHIP

Proven Legacy of Innovation

Decades of expertise driving next generation solutions

Ready for Scale

300 mm vision and 200 mm ramp-up in progress

Financial Strength & Stability

A reliable long-term partner

Value Beyond Supply

Adding innovation, service, and collaboration

Complement to Your Success

Enabling and enhancing customers' products

Trusted Partnership

More than a supplier, a true partner

