Finisar

APPLICATION NOTE

Controlling the WaveAnalyzer using the Web API

1. Scope and Overview

The Wave Analyzer High Resolution Optical Spectrum
Analyzer provides a rich set of tools to allow instrument
control and data acquisition from within other programs.
The WaveAnalyzer hosts a Web server on the instrument
and can interact with software applications using HTTP
(HyperText Transfer Protocol). The software commands and
control interface are based on RESTful style Web services
that provide the ability to configure the device and access to
measurement data using HTTP commands from a Web
browser or from a software programming language.

This Application Note provides details on how to connect to
the WaveAnalyzer and the principles underlying the
WaveAnalyzer WEB API. Details of each command are
explained and finally programming examples for the major
programming and instrument control languages are given.

2. Connecting to the WaveAnalyzer

The link layer connection to the WaveAnalyzer is Ethernet,
which is carried over standard Cat 6 cable or USB 2.0 cable.
This enables user interaction from a Web browser or the
WaveAnalyzer software application GUI, as well as
automated control from most modern programming
languages.

The user can connect to the WaveAnalyzer in two ways:

e Point-to-point mode from a computer, using Ethernet
or USB connection, or
¢ Remote network device mode over an IP network.

In point-to-point mode, the WaveAnalyzer is connected
directly to the user’s computer via a GbE (Gigabit Ethernet)
ora USB 2.0 port. GbE point-to-point connection over Cat 6
cable is recommended, to enable the fastest available
WaveAnalyzer measurement rates. Other connection
methods might result in slower measurement display
refresh rates, due to insufficient performance of the
networks or connections.

Page 1

Connection Default IP address

mDNS WAOQ0O00xxx.local
GbE (point-to-point or DHCP) 169.254.3.8
USB (Ethernet over USB) 192.168.2.8

Table 2-1 Default IP addresses

2.1 GbE point-to-point connection

The WaveAnalyzer has a GbE (Gigabit Ethernet) interface,
and it is recommended to use GbE on the user’'s computer to
enable the fastest available WaveAnalyzer measurement
rates.

The default IP address of the point-to-point Ethernet
interface is 169.254.3.8

The IP address of the WaveAnalyzer Ethernet interface is set
to the subnet 169.254.xxx.xxx, enabling automatic private IP
address allocation in Windows 7 and higher.

A computer with a free GbE port can connect directly to a
WaveAnalyzer, while simultaneously using another Ethernet
connection to a network.

A computer with a single GbE port can swap a single Cat 6
cable between a network and a WaveAnalyzer without
requiring re-configuration. However, for convenience, the
computer can usually be expanded with an additional NIC
(network interface controller) or a USB Ethernet adapter.

2.2 USB point-to-point connection

The WaveAnalyzer communicates over USB by creating an
Ethernet link over USB. This functionality is provided by a
driver called RNDIS/Ethernet Gadget, which is installed
along with the WaveAnalyzer software package. Standard
installations of Windows 7 and higher include this driver.

The default IP address of the USB Ethernet interface is
192.168.2.8

The speed and stability of the WaveAnalyzer connection is
affected by the USB connection. The cable quality and
length, as well as the USB port and driver on the computer
may slow the transfer rate or cause connection instability.

APPLICATION NOTE: Controlling the WaveAnalyzer using the Web API

-~

.

For this reason, GbE is the recommended connection
method, while USB operation is offered for convenience.

2.3 IP name resolution

Identifying the IP address of a network device can be
tedious and difficult. To avoid this, the WaveAnalyzer can
use its serial number as its IP address, e.g. WaveAnalyzer

serial no. WA000123 can be addressed as "WA000123.local".

This alias is resolved by a Windows service called multicast
Domain Name System (mDNS), which is installed on the
user's computer along with the WaveAnalyzer software
package.

The alias works regardless of the physical connection; both
GbE and USB connectivity work with mDNS. The initial
automated connection can take time to establish, while the
mDNS service discovers and translates the alias IP address.
Once the connection is established, normal connection
speed is available.

2.4 Remote network device connection

The WaveAnalyzer can connect to a network and can be
operated from remote locations on the network. This
requires the WaveAnalyzer to be configured to use DHCP
(Dynamic Host Configuration Protocol). This is achieved by
connecting to the WaveAnalyzer using a web browser
pointed at the IP address of the WaveAnalyzer.

The Web interface allows the user to set a fixed IP address
for the WaveAnalyzer 1500S, or configure it to use DHCP
(Dynamic Host Configuration Protocol). In the Web
interface, click Tools and then Change IP configuration to
configure the WaveAnalyzer 1500S IP address.

Once the WaveAnalyzer has accepted a network IP address,
multiple users can access the instrument to view
measurements, albeit with a reduced refresh rate in some
instances.

Note: Any user can change settings on the WaveAnalyzer;
this may cause unexpected results for other users.

Page 2

3. Web API Basics

The WaveAnalyzer uses HTTP methods, mainly GET/PUT, to
configure the instrument and retrieve measurement data.
The WaveAnalyzer Web server can be accessed via all
available connection methods, with different approaches to
defining its IP address.

The most common use case is retrieving measurement data
from the WaveAnalyzer. A Web browser can send an HTTP
GET request to the WaveAnalyzer Web server, to retrieve
measurement data. Once the WaveAnalyzer is connected,
which can be verified using a "ping" command, open a Web
browser and enter the following URL into the address bar.

http://<waveanalyzer IP address>/wanl/data/text

E.g., for a WaveAnalyzer connected via GbE, the following
URL will return the current measurement data in text format
(see Section 4.2 for more details on the syntax of the
command and the returned data)

http://169.254.3.8/wanl/data/text

For more complex automation, modern programming
languages support HTTP requests through common libraries
and these are described in Section 5.

4. WaveAnalyzer Commands

The WaveAnalyzer Web service API supports the following
functions:

4.1 Scan configuration

Set the WaveAnalyzer scan range, with
center frequency and span specified in
MHz. The port parameter selects either the
Normal or HighSens optical input port on
the WaveAnalyzer.

Description:

HTTP method: GET/PUT

URL: http://<ip>/wanl/scan/<center>/[/<port>]

APPLICATION NOTE: Controlling the WaveAnalyzer using the Web API

Parameter ‘ Description ‘

center Scan center frequency (MHz).

span Scan range span (MHz).

port Select the optical input connection in use.
(optional) | Normal (default) or HighSens

Response: JSON formatted response includes the

following fields.

JSON field Description

Result code.
rc 0: success.

Non-zero for errors (see result code table).
Example:

http://169.254.3.8/wanl/scan/194000000/1000000/Normal

The above example sets the scan range from 193.0 to 195.0
THz using the Normal optical input connection for a
WaveAnalyzer connected via GbE.

4.2 Download measurement data
Description: Retrieve the most recent WaveAnalyzer
measurement data. The <format> tag is
used to specify how the data is returned,
either in tab-delimited text, JSON or binary.
The [?triggerin=on] parameter includes
the trigger mask along with the
measurement data, identifying the portion
of the measurement data when the Trigger

In port was on.

HTTP method: GET

URL: http://<ip>/wanl/data/<format>[?triggerin=on]
Parameter Description ‘
Response format text|json|bin where
text: raw text format,
Format .
json: JSON format,
bin: binary format
triggerin Include input trigger flag along with
(optional) measurement data.

Text response: The text response contains header
information followed by formatted

measurement data, as shown below.

Page 3

-

- &
= ;-‘ -

Model Type: <model type>
Model Number: < model number>
Serial Number: <serial>
Firmware Version: <version>
Software Vversion: N.A.

Scan ID: <scan id>

Creation Time: N.A.

Data:

Frequency [MHz] Absolute Power [mdBm] Power X-
Polarization [mdBm] Power Y-Polarization [mdBm]
193299000 -90000 -90000 -90000
193299020 -90000 -90000 -90000
193299040 -90000 -90000 -90000
193299060 -90000 -90000 -90000
193299080 -90000 -90000 -90000

An extra Flag column is included when the "triggerin=on"
parameter is used, with "0" indicating trigger low and "1"
indicating trigger high.

Model Type: <model type>
Model Number: < model number>
Serial Number: <serial>
Firmware Vversion: <version>
Software version: N.A.

Scan ID: <scan id>

Creation Time: N.A.

Data:

Frequency [MHz] Absolute Power [mdBm] Power X-
Polarization [mdBm] Power Y-Polarization [mdBm] Flag
193299000 -90000 -90000 -90000 O

193299020 -90000 -90000 -90000 O

193299040 -90000 -90000 -90000 1

193299060 -90000 -90000 -90000 1

193299080 -90000 -90000 -90000 O

JSON response: The JSON formatted response includes the
following fields.

JSON field Description

Id Scan sequence ID.
Array of scan records. Each record is a
JSON array of integer values in the
following order: [Frequency (MHz),
data Absolute Power (mdBm), Power X-

Polarization (mdBm), Power Y-Polarization
(mdBm), Flag (optional, included with
"triggerin=on" parameter)].

An example JSON formatted response is shown below.

{

"id":20255,
"data":[[193299000,-90000,-90000,-90000,0],
[193299020,-90000, -90000,-90000,0],
[193299040,-90000, -90000,-90000,0],
[193299060,-90000, -90000,-90000,0] ,
[193299080,-90000, -90000,-90000,0],
[193299100,-90000, -90000,-90000,0] ... 1

3

APPLICATION NOTE: Controlling the WaveAnalyzer using the Web API

Binary response:

Binary encoded response starts
with a 1000 bytes fixed size header
followed by binary integer encoded
records. Each record has 20 bytes that
include five 32-bit integers (little endian).
The format is detailed below.

Offset (bytes) Description
JSON formatted header information with
the following fields:

0 { "ver": <version>,

"id": <scan sequence id> }

(Zero-padded to 1000 bytes.)

1000 Frequency (MHz)

1004 Absolute power (mdBm)

1008 Power x-polarization (mdBm)

1012 Power y-polarization (mdBm)

1016 Flag
Additional records with the same format
as above.

Example:

http://169.254.3.8/wanl/data/text?triggerin=on

The above example retrieves data from a WaveAnalyzer
connected via GbE, and returns the data as formatted text.

4.3 Download measurement data - linear scale

Description:

Retrieve the most recent WaveAnalyzer
1500S measurement data with the power
levels represented in mW. The
[?triggerin=on] parameter includes the
trigger mask along with the measurement
data, identifying the portion of the
measurement data when the Trigger In port
was active.

Note: This feature is introduced in
WaveAnalyzer 1500S firmware version 1.02.

HTTP method: GET

URL:

http://<ip>/wanl/lineardata/bin[?triggerin=on]

Page 4

-~
o

.

Parameter Description

triggerin
(optional)

Include input trigger flag along with
measurement data.

Binary response: Binary encoded response starts with a
1000 bytes fixed size header followed by
binary integer encoded records. Each
record has 20 bytes that include five 32-bit
integers (little endian). The format is
detailed below.

Offset Description
((OIED)
JSON formatted header information with the
following fields:
0 { "ver": <version>,
"id": <scan sequence id> }
(Zero-padded to 1000 bytes.)
1000 Frequency (MHz)
1004 Absolute power (mW)
1008 Power in x-polarization (mW)
1012 Power in y-polarization (mW)
1016 Flag
Additional records with the same format as
above.
Example:

http://169.254.3.8/wanl/lineardata/bin?triggerin=on

The above example retrieves data from a WaveAnalyzer
1500S connected via GbE, and returns the data in binary

format.

4.4 Retrieve WaveAnalyzer device information

Description:

HTTP method:
URL:

Response:

Retrieve the status of the latest
measurement scan.

GET
http://<ip>/wanl/info

The JSON formatted response includes the
following fields.

APPLICATION NOTE: Controlling the WaveAnalyzer using the Web API

JSON field Description

model WaveAnalyzer model
sno Serial number

version Firmware version
vendo Manufacture company

4.5 Retrieve scan information
Description: Retrieve the configuration of the latest

measurement scan.

HTTP method: GET
URL: http://<ip>/wanl/scan/info
Response: The JSON formatted response includes the

following fields.

JSON field Description ‘
. Scan count in the current power-on
scanid .
session.
Center frequency of the current
center
measurement (MHz).
span Frequency span (range) of the current
P measurement (MHz).
Start frequency of the current
startfreq
measurement range (MHz).
Stop frequency of the current
stopfreq pireq y
measurement range (MHz).
Selected optical input port (Normal or
port .
HighSens) for the current measurement.
5. Integration guide

Most programming languages include libraries to perform
HTTP transactions. Some examples are given below.

5.1 Python

Python has several libraries for creating HTTP requests. The
requests package has an extremely simple APl and is well
suited to interacting with the WaveAnalyzer. An advantage
of using requests is the ability of the request object to hold

Page 5

-

-
= -~ -

the returned data as a JSON object, allowing easy parsing in
a Python script.

Example Python script to retrieve WaveAnalyzer data:

import requests

import numpy as np

m =
requests.get('http://WA000001.Tlocal/wanl/data/json")
measData = m.json()['data']

foo = m.json()['data']

measData = np.array(foo)

freq = measbata[:,0]
freq = measbData[:,0]/1e6
Pwr = measDatal[:,3]/1le3

52 C#

Example C# function to retrieve WaveAnalyzer data:
using System;

using System.IO;

using System.Net;

namespace wWaveAnalyzerExamplel
{
class Program
{
static void Main(string[] args)
{
// Create a request for the URL.
webRequest request = WebRequest.Create(
"http://192.168.2.8/wanl/data/text");
// Get the response.
wWebResponse response
request.GetResponse();
// Get the stream containing content
returned by the server.
// Open the stream using a StreamReader for
easy access.
StreamReader reader = new

StreamReader(response.GetResponseStream()) ;
// Read the content.
string data = reader.ReadToEnd();
// Process data
System.Console.write(data);
// Clean up the streams and the response.
reader.Close(Q);
response.Close();

53 VB

Example VB.NET function to retrieve WaveAnalyzer data:

Imports System
Imports System.IO
Imports System.Net

Module waveAnalyzerExamplel

Sub Main(Q)
' Create a request for the URL.
Dim request As WebRequest = _

webRequest.Create("http://192.168.2.8/wanl/data/text")

' Get the response.

Dim response As WebResponse =
request.GetResponse()

' Open the stream using a StreamReader for easy
access.

Dim reader As New
StreamReader(response.GetResponseStream())

' Read the content.

Dim responseFromServer As String =
reader.ReadToEnd()

' Display the content.

Console.writeLine(responseFromserver)

' Clean up the streams and the response.

reader.Close()

response.Close()

End Sub

End Module

5.4 Java
Java has many HTTP libraries, e.g. Apache HttpClient library.
Example Java code to retrieve WaveAnalyzer data:

import org.apache.http.client.fluent.Request;
import org.apache.http.entity.ContentType;

String data =
Request.Get("http://192.168.2.8/wanl/data/json")
.connectTimeout(120000)
.socketTimeout(120000)
.execute() .returnContent().asstring(Q;

//Process the result.

Page 6

5.5 LabVIEW

LabVIEW contains SubVIs that handle HTTP requests. These
are collected in the Data Communication > Protocols > HTTP
Client palette shown below.

Fomctom T o]
Progarmes ’

Example LabVIEW VI to retrieve WaveAnalyzer information
and data:

IWAUEIDUUI.IDcal_.-'wanl_a‘d ata,/text

Info Measured Data

[WADD0OOL.local/wanl/info

. T HTTF _i.-- HTTF.
Error in (no error) e GET _ |d{sET__ error out
DL T =
5.6 MATLAB

In MATLAB, the webread and webwrite commands are
recommended for accessing RESTful services; these
commands were introduced in MATLAB version 2014b.
Older versions of MATLAB can use urlread and urlwrite, as
described in the GNU Octave section.

5.7 GNU Octave

RESTful services are accessed in GNU Octave through the
libcurl library, which is wrapped by the commands urlread
and urlwrite.

urlread retrieves the response to an HTTP request into a
string, whereas urlwrite dumps the response to a file.

-~

o

APPLICATION NOTE: Controlling the WaveAnalyzer using the Web API

textdata = urlread('192.168.2.8/wanl/data/text")

//Process the result.

Filepath = urlwrite('192.168.2.8/wanl/data/text',
"text.txt')

5.8 C/C++

In C/C++, libcurl is recommended for communicating with
the WaveAnalzyer.

Example code to retrieve WaveAnalyzer measurement data:

#include <curl/curl.h>
#include <stdio.h>

int mainQ {
curl_global_init(CURL_GLOBAL_ALL);
CURL* curl_ = curl_easy_init(Q);
CURLcode curlrc;
curl_easy_setopt(curl_, CURLOPT_URL,

"http://192.168.2.8/wanl/data/text");
curlrc = curl_easy_perform(curl_);
curl_easy_cleanup(curl_);
return 0;

For more information on the WaveAnalyzer please contact
your local WaveAnalyzer sales representative or visit
http://www finisar.com/instruments.

F I N ISA R® 1389 Moffett Park Drive

Sunnyvale, CA 94089
Tel.: +1-408-548-1000
Fax: +1-408-541-6138 ©2015-2018 Finisar Corporation. All rights
waveanalyzer@finisar.com reserved. Finisar is a registered trademark.

. . WANL 11/18
http://www.finisar.com/instruments

http://www.finisar.com/instruments
mailto:waveanalyzer@finisar.com
http://www.finisar.com/instruments

