Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study

Giorgio Tonelli, Vikas Sudesh, Martin Richardson, Michael Bass, Alessandra Tonelli, and Mauro Giorgio

(Received 31 December 2007; accepted 25 February 2008; published online 5 May 2008)

Spectroscopic properties of thulium-doped germanate, silica, and phosphate glasses were measured and compared since such glasses are of interest as materials for fiber lasers in the eye-safe wavelength region. The excited state fluorescence decay dynamics was investigated at temperatures from 8 to 300 K and the results revealed a strong dependence of the lifetime on the host matrix. The temperature-dependent stimulated emission cross section was obtained by using the Fuchtbauer-Ladenburg technique. In phosphate glass the fluorescent lifetime is short, making this material difficult to use for 2 μm laser purposes. Tm3+-doped germanate glass shows a longer lifetime than silica, a comparable value of stimulated emission cross section and some interesting temperature-independent properties.

© 2008 American Institute of Physics

For access to citing articles, you need to log in.

Related Articles | Related Patents

Related Articles
- Room Temperature Polariton Photoluminescence in a Two-dimensional Array of Inorganic-organic Hybrid-type Quantum-wells
- Avalanche upconversion in Er3+ doped fluoroindate glass
- Influence of Nitrogen/Methane Ratio on the Properties of Hydrogenated Amorphous Carbon Nitride Deposited by r.f. PECVD Technique
 AIP Conf. Proc. 1150, 266 (2009)
- Stark effects on the spectra of trivalent praseodymium ions in strontium fluorapatite laser host
- Optical characterizations of photo-induced chemical vapor deposition produced SiO2 films in vacuum ultraviolet, ultraviolet, and visible region
 J. Appl. Phys. 74, 5742 (1993)

View More

Your Recent History

Recently Viewed Articles
- Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study

Recently Searched Keywords
- Peer-reviewed articles > 093104

Copyright © 2010 American Institute of Physics