ELECTRO-OPTIC SWITCH

Fast Rise Time Electro-Optic Switch for CO_{2} Lasers

This innovative series of electo-optic switches (Pockels Cells) offers the benefits of fast rise time pulsing, which translates to sharper, cleaner features and minimized heat-affected zones, especially in materials processing tasks such as PCB via hole drilling. Remarkably, this superior performance is available at the same cost as achieved using traditional, lower-performance acousto-optic modulators.

The devices enhance optical performance and streamline the beam delivery system since, unlike an AOM, an electro-optic switch doesn't deviate the beam. Embrace the future of precise, efficient materials processing with Coherent electro-optic switch.

FEATURES

- Fast rise time for improved materials processing
- No beam deflection for simplified delivery optics
- Large aperture (9 mm)
- Handles up to 300 W
- Comparable insertion loss to AOMs
- Supplied as a complete system
- Electro-optic switch, TFPs, Driver, and Power Source

APPLICATIONS

- PCB Via Hole Drilling
- Marking
- Engraving
- Perforating

Optical Specifications	Electro-Optical Switch
Aperture Diameter (mm)	9.0
Minimum Beam Height (mm) (from adapter base)	27.2
Surface Figure (Fringes at $\lambda=633 \mathrm{~nm})$	0.5
Maximum Input Power (W)	300
Minimum Beam Diameter (mm) (1/e$)$	3
Operable Wavelengths ${ }^{1}(\mu \mathrm{~m})$	9.4
Performance Specifications	90
Pockels Cell Transmission (\%)	85
Polarizer-Pockels Cell-Polarizer Transmission (\%)	$200: 1$
Contrast Ratio	30
Acoustic 2\% Time ($\mu \mathrm{s})$	250
Pointing Deviation ($\mu \mathrm{rad})(10$ minutes)	50
Optical Rise/Fall Time (ns) (20\% to 80\%)	

Notes:

1. Can be coated for any wavelength in the $5-11 \mu \mathrm{~m}$ range but only operates $0-100 \%$ transmission at 1 selected wavelength.

The theoretical maximum operation characteristics of the driver can be defined by the following equation:

$$
250 \geq f_{\text {system }} \cdot n_{\text {pulses }}\left(0.003+10 \cdot t_{\text {pulse }}\right)^{1}
$$

Where:
$f_{\text {system }}=$ frequency of system in (Hertz), measured from one laser pulse to the next (typically 5 kHz or 10 kHz).
$n_{\text {pulses }}=$ number of puses per burst (typically between 1 and 5).
$t_{\text {pulse }}=$ width of pulses in (seconds) (typically between 200 ns and $10 \mu \mathrm{~s}$).

Notes:
 High-Voltage electronics may become irreparably damaged. Coherent Corporation is not responsible for device failures or damage due to operation outside the bounds of the above equation.

Typical Performance Data

