

# **Product Specification**

# Quadwire<sup>®</sup> 40 Gb/s Parallel Active Optical Cable

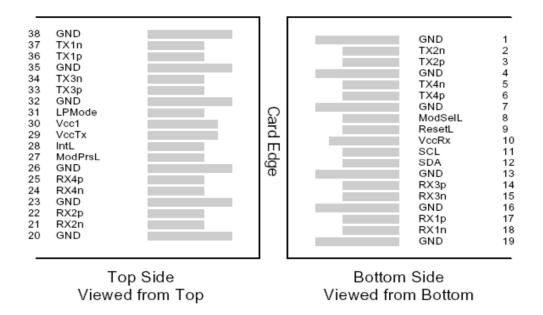
### FCCx410QD3Cyy

### **PRODUCT FEATURES**

- Four-channel full-duplex active optical cable
- Multirate capability: 1.06Gb/s to 10.5Gb/s per channel
- Complies with QSFP MSA highdensity form factor
- Round, plenum-rated (OFNP) and riser-rated (OFNR), low smoke zero halogen (LSZH) cables
- Connectivity Diagnostics<sup>®</sup> ready
- Rigid pull-tab with embedded LED light
- Hot Pluggable
- Low power dissipation: <1.3W per cable end
- Commercial operating case temperature range: 0°C to 70°C
- RoHS-6 Compliant



diagnostics


### APPLICATIONS

- InfiniBand QDR
- 40G Ethernet
- 4G/8G/10G Fibre Channel
- HPC Interconnections
- SATA/SAS3

#### **PRODUCT SELECTION (Standard Lengths\*)**

| FCC     | FCCx410QD3Cyy                                                 |  |  |  |  |  |
|---------|---------------------------------------------------------------|--|--|--|--|--|
| x:      | N = Plenum-rated (OFNP) cable jacket                          |  |  |  |  |  |
|         | R = Riser-rated (OFNR) low smoke zero                         |  |  |  |  |  |
|         | halogen (LSZH) cable jacket                                   |  |  |  |  |  |
| yy*:    | 3 = 3m  length                                                |  |  |  |  |  |
|         | 05 = 5m length                                                |  |  |  |  |  |
|         | 10 = 10m  length                                              |  |  |  |  |  |
|         | 15 = 15m  length                                              |  |  |  |  |  |
|         | 20 = 20m length                                               |  |  |  |  |  |
|         | 30 = 30m length                                               |  |  |  |  |  |
|         | 50 = 50 m  length                                             |  |  |  |  |  |
|         | X0 = 100m length                                              |  |  |  |  |  |
| *Please | contact Finisar for availability of additional cable lengths. |  |  |  |  |  |

### I. Pin Descriptions



| Pin | Symbol  | Name/Description                    | Notes |
|-----|---------|-------------------------------------|-------|
| 1   | GND     | Ground                              | 1     |
| 2   | Tx2n    | Transmitter Inverted Data Input     |       |
| 3   | Tx2p    | Transmitter Non-Inverted Data Input |       |
| 4   | GND     | Ground                              | 1     |
| 5   | Tx4n    | Transmitter Inverted Data Input     |       |
| 6   | Tx4p    | Transmitter Non-Inverted Data Input |       |
| 7   | GND     | Ground                              | 1     |
| 8   | ModSelL | Module Select                       |       |
| 9   | ResetL  | Module Reset                        |       |
| 10  | Vcc Rx  | +3.3 V Power supply receiver        |       |
| 11  | SCL     | 2-wire serial interface clock       |       |
| 12  | SDA     | 2-wire serial interface data        |       |
| 13  | GND     | Ground                              | 1     |
| 14  | Rx3p    | Receiver Non-Inverted Data Output   |       |
| 15  | Rx3n    | Receiver Inverted Data Output       |       |
| 16  | GND     | Ground                              | 1     |
| 17  | Rx1p    | Receiver Non-Inverted Data Output   |       |
| 18  | Rx1n    | Receiver Inverted Data Output       |       |
| 19  | GND     | Ground                              | 1     |
| 20  | GND     | Ground                              | 1     |
| 21  | Rx2n    | Receiver Inverted Data Output       |       |
| 22  | Rx2p    | Receiver Non-Inverted Data Output   |       |
| 23  | GND     | Ground                              | 1     |
| 24  | Rx4n    | Receiver Inverted Data Output       |       |
| 25  | Rx4p    | Receiver Non-Inverted Data Output   |       |
| 26  | GND     | Ground                              | 1     |

| 27 | ModPrsL | Module Present                      |   |
|----|---------|-------------------------------------|---|
| 28 | IntL    | Interrupt                           |   |
| 29 | Vcc Tx  | +3.3 V Power supply transmitter     |   |
| 30 | Vcc1    | +3.3 V Power Supply                 |   |
| 31 | LPMode  | Low Power Mode                      |   |
| 32 | GND     | Ground                              | 1 |
| 33 | Tx3p    | Transmitter Non-Inverted Data Input |   |
| 34 | Tx3n    | Transmitter Inverted Data Input     |   |
| 35 | GND     | Ground                              | 1 |
| 36 | Tx1p    | Transmitter Non-Inverted Data Input |   |
| 37 | Tx1n    | Transmitter Inverted Data Input     |   |
| 38 | GND     | Ground                              | 1 |

Notes

1. Circuit ground is internally isolated from chassis ground.

#### II. **General Product Characteristics**

| Parameter                         | Value                                                                                 | Unit   | Notes                                                 |
|-----------------------------------|---------------------------------------------------------------------------------------|--------|-------------------------------------------------------|
| Module Form Factor                | QSFP                                                                                  |        |                                                       |
| Number of Lanes                   | 4 Tx and 4 Rx                                                                         |        |                                                       |
| Maximum Aggregate Data Rate       | 42.0                                                                                  | Gb/s   |                                                       |
| Maximum Data Rate per Lane        | 10.5                                                                                  | Gb/s   |                                                       |
| Standard Cable Lengths            | 3, 5, 10, 15, 20, 30, 50, 100                                                         | meters | Other lengths may be available<br>upon request (<100) |
| Protocols Supported               | Typical applications include<br>InfiniBand, Fibre Channel,<br>40G Ethernet, SATA/SAS3 |        |                                                       |
| Electrical Interface and Pin-out  | 38-pin edge connector                                                                 |        | Pin-out as defined by the<br>QSFP MSA                 |
| Standard Optical Cable Type       | Multimode fiber cable assembly                                                        |        |                                                       |
| Maximum Power Consumption per End | 1.3                                                                                   | Watts  |                                                       |
| Management Interface              | Serial, I2C-based, 400 kHz<br>maximum frequency                                       |        | As defined by the QSFP MSA                            |

| Data Rate Specifications | Symbol | Min  | Тур | Max   | Units  | Ref. |
|--------------------------|--------|------|-----|-------|--------|------|
| Bit Rate per Lane        | BR     | 1000 |     | 10500 | Mb/sec | 1    |
| Bit Error Ratio          | BER    |      |     | 10-12 |        | 2    |

Notes:

 <sup>1/10</sup> Gigabit Ethernet and 1/2/4/8/10G Fibre Channel compatible.
Tested with a PRBS 2<sup>31</sup>-1 data pattern for bit rate above 2.5Gb/s, PRBS 2<sup>23</sup>-1 for bit rate 2.5Gb/s, and PRBS 2<sup>7</sup>-1 for bit rate 1.25Gb/s.

### III. Connectivity Diagnostics<sup>®</sup> Technology

Finisar's FCCx410QD3Cxx Quadwire<sup>®</sup> AOCs are equipped with Connectivity Diagnostics<sup>®</sup>, which combines out-of-band signaling between the transceivers at the two ends of the AOC, and LED lights embedded in their pull tabs.

The Quadwire<sup>®</sup> implements two Connectivity Diagonostics<sup>®</sup> features:

# Helps locate the other end of the AOC. Manually pushing-in either pull tab will light up their LED lights on both ends.

# LynkGuardian<sup>-</sup>

Reports the health status of the AOC. Any Digital Diagnostic Monitoring warning/alarm events, transmitter fault or receiver loss of signal will light up the pull-tab LED lights on both ends.

A detailed description of Connectivity Diagnostics<sup>®</sup> is provided in Finisar's Application Note AN-2158 [4].

### IV. Absolute Maximum Ratings

| Parameter                  | Symbol          | Min  | Тур | Max | Unit | Ref. |
|----------------------------|-----------------|------|-----|-----|------|------|
| Maximum Supply Voltage     | Vcc1,           | -0.5 |     | 3.6 | V    |      |
|                            | VccTx,          |      |     |     |      |      |
|                            | VccRx           |      |     |     |      |      |
| Storage Temperature        | Ts              | -40  |     | 85  | °C   | 1    |
| Case Operating Temperature | T <sub>OP</sub> | 0    |     | 70  | °C   |      |
| Relative Humidity          | RH              | 0    |     | 85  | %    | 2    |

Notes:

1. Assumes no mechanical load force on the unit. Ensuring no mechanical load force requires a cable bend radius of >105 mm within 100 mm of either cable end module and >60 mm on the rest of the cable.

2. Non-condensing.

### V. Electrical Characteristics ( $T_{OP} = 0$ to 70°C, $V_{CC} = 3.3 \pm 5\%$ Volts)

| Parameter                      | Symbol  | Min  | Тур | Max  | Unit | Ref. |
|--------------------------------|---------|------|-----|------|------|------|
| Supply Voltage                 | Vcc1,   | 3.15 |     | 3.45 | V    |      |
|                                | VccTx,  |      |     |      |      |      |
|                                | VccRx   |      |     |      |      |      |
| Supply Current                 | Icc     |      |     | 350  | mA   |      |
| Link Turn-On Time              |         |      |     |      |      |      |
| Transmit Turn-On Time          |         |      |     | 2000 | ms   | 1    |
| Transmitter (per Lane)         |         |      |     |      |      |      |
| Differential data input swing  | Vin,pp  | 180  |     | 1200 | mVpp | 2    |
| Differential input threshold   |         |      | 50  |      | mV   |      |
|                                |         |      |     |      |      |      |
| Receiver (per Lane)            |         |      |     |      |      |      |
| Differential data output swing | Vout,pp | 100  |     | 1200 | mVpp | 3,4  |
| Power Supply Ripple Tolerance  | PSR     | 50   |     |      | mVpp |      |

Notes:

- 1. From power-on and end of any fault conditions.
- 2. AC coupled internally. See Figure 2 for input eye mask requirements. Self-biasing  $100\Omega$  differential input.
- 3. AC coupled with  $100\Omega$  differential output impedance. See Figure 3 for output eye mask.
- 4. Settable in 4 discrete steps. See SFF-8636 [2] Table 6-33 for the output differential amplitude control.

## VI. High-Speed Electrical Characteristics per Lane

(Top = 0 to 70°C, V<sub>CC</sub> =  $3.3 \pm 5\%$  Volts)

| Parameter –Inputs                         | Symbol       | Conditions     | Min | Тур | Max  | Units       | Ref. |
|-------------------------------------------|--------------|----------------|-----|-----|------|-------------|------|
| Reference Differential Input<br>Impedance | $Z_d$        |                |     | 100 |      | Ω           |      |
| Termination Mismatch                      | $\Delta Z_M$ |                |     |     | 5    | %           | 1    |
| Input AC Common Mode Voltage              |              |                |     |     | 25   | mV<br>(RMS) |      |
| Differential Input Return Loss            | SDD11        | 0.01-4.1 GHz   |     |     |      | dB          | 2    |
| Differential liiput Return Loss           |              | 4.1 – 11.1 GHz |     |     |      | dB          | 3    |
| Differential to Common Mode<br>Loss       | SCD11        | 0.01-11.1 GHz  |     |     | -10  | dB          |      |
| Jitter Tolerance (Total)                  | TJ           |                |     |     | 0.40 | UI          |      |
| Jitter Tolerance (Deterministic)          | DJ           |                |     |     | 0.15 | UI          |      |

Notes:

1. See SFF-8431 Rev 3.2 (SFP+) section D.15 Termination Mismatch for definition & test recommendations

2. Reflection coefficient given by equation SDD11(dB)<-12+2\*SQRT(f), with f in GHz. See Figure 4.

3. Reflection coefficient given by equation SDD11(dB)<-6.3+13Log10(f/5.5), with f in GHz. See Figure 4.

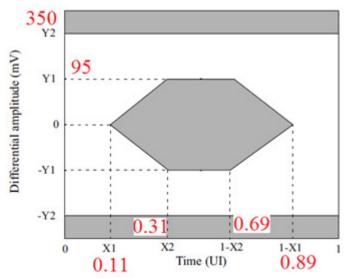



Figure 2 – Transmitter Input Differential Signal Mask

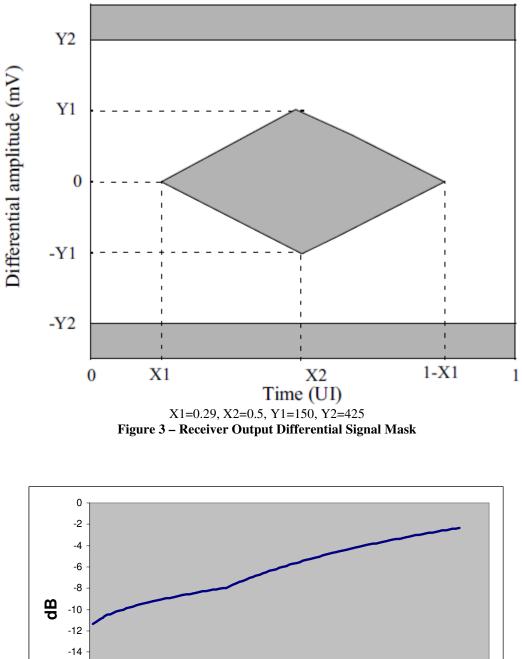
| Parameter –Outputs                      | Symbol                            | Conditions     | Min | Тур | Max | Units             | Ref. |
|-----------------------------------------|-----------------------------------|----------------|-----|-----|-----|-------------------|------|
| Reference Differential Output Impedance | Zd                                |                |     | 100 |     | Ω                 |      |
| Termination Mismatch                    | $\Delta Z_M$                      |                |     |     | 5   | %                 |      |
| Output AC Common Mode Voltage           |                                   |                |     |     | 15  | mV <sub>RMS</sub> |      |
| Output Rise and Fall time (20% to 80%)  | t <sub>RH</sub> , t <sub>FH</sub> |                | 24  |     |     | ps                |      |
| Differential Output Peturn Loss         | CDD22                             | 0.01-4.1 GHz   |     |     |     | dB                | 1    |
| Differential Output Return Loss         | SDD22                             | 4.1 – 11.1 GHz |     |     |     | dB                | 2    |
| Common Mode Output Datum Loss           | SCC22                             | 0.01-2.5 GHz   |     |     |     | dB                | 3    |
| Common Mode Output Return Loss          | SCC22                             | 2.5-11.1 GHz   |     |     | -3  | dB                |      |

Notes:

- 1. Reflection coefficient given by equation SDD22(dB) < -12+2\*SQRT(f), with f in GHz. See Figure 4.
- 2. Reflection coefficient given by equation SDD22(dB)<-6.3+13Log10(f/5.5), with f in GHz. See Figure 4.
- 3. Reflection coefficient given by equation SCC22(dB)<-7+1.6\*f, with f in GHz.

| <b>Receiver Output Jitter Specification</b> | Symbol            | Min | Тур | Max  | Units | Ref. |
|---------------------------------------------|-------------------|-----|-----|------|-------|------|
| Deterministic Jitter                        | DJ <sub>OUT</sub> |     |     | 0.38 | UI    | 1    |
| Total Jitter                                | TJ <sub>OUT</sub> |     |     | 0.64 | UI    | 1    |

Notes:


1. When transmitter input jitter specs are met.

| Other Informational Specifications<br>(not tested) | Symbol         | Min | Тур | Max  | Units | Ref. |
|----------------------------------------------------|----------------|-----|-----|------|-------|------|
| Max Bit Rate NRZ                                   | В              |     |     | 10.5 | Gb/s  |      |
| Low Frequency 3dB Cutoff                           | f <sub>c</sub> | 175 |     |      | kHz   |      |
| Ch / Ch crosstalk                                  |                |     |     | -26  | dB    |      |
| Output Pre-Emphasis                                |                |     |     | 5    | dB    | 1    |
| Pre-Emphasis pulse width                           |                | 60  |     | 90   | ps    |      |
| Channel-to-channel skew                            |                |     |     | 24   | ns    | 2    |
| Latency                                            |                | 400 | 495 | 600  | ns    | 2    |
| Digital clock to data delay                        |                |     |     | 25   | ns    |      |
| Digital output rise/fall times                     |                |     |     | 5    | ns    |      |
| Digital input / output Cap                         |                |     |     | 1    | pF    |      |
| Digital input logic High                           |                | 2   |     |      | V     |      |
| Digital input logic Low                            |                |     |     | 1    | V     |      |
| ESD Signal pads                                    |                |     |     | 500  | V     | 3    |
| ESD (other pads)                                   |                |     |     | 2    | kV    | 3    |

Notes:

- 1. Test data based on fixed amplitude value 0. (If AMP value=0x0f, max value of Pre-E will be smaller)
- 2. For worst-case 100m length.
- 3. Human Body Model (HBM)





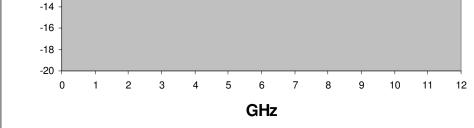



Figure 4 – Maximum Transmitter Input and Receiver Output Differential Return Loss

### VII. Memory Map and Control Registers

Compatible with SFF-8436.<sup>2</sup> Please see Finisar Application Note AN-2075: Quadwire<sup>®</sup> EEPROM Mapping<sup>3</sup> for details.

### VIII. Environmental Specifications

Finisar Quadwire<sup>®</sup> active optical cables have an operating temperature range from  $0^{\circ}$ C to +70°C case temperature.

| Environmental Specifications | Symbol           | Min | Тур | Max | Units | Ref. |
|------------------------------|------------------|-----|-----|-----|-------|------|
| Case Operating Temperature   | T <sub>op</sub>  | 0   |     | 70  | °C    |      |
| Storage Temperature          | T <sub>sto</sub> | -40 |     | 85  | °C    | 1    |

1. Assumes no mechanical load force on the unit. Ensuring no mechanical load force requires a cable bend radius of >105 mm within 100 mm of either cable end module and >60 mm on the rest of the cable.

### IX. Regulatory Compliance

Finisar Quadwire<sup>®</sup> active optical cables are RoHS-6 Compliant. Copies of certificates are available at Finisar Corporation upon request.

Quadwire<sup>®</sup> active optical cables are Class 1 laser eye safety compliant per IEC 60825-1.

The round cable jacket is available in both plenum-rated (OFNP) and riser-rated (OFNR) low smoke zero-halogen (LSZH).

### X. Mechanical Specifications

The Quadwire<sup>®</sup> mechanical specifications are based on QSFP transceiver module specifications, substituting the MPO connectors with a cable connecting both ends. Rigid pull-tab is opaque in non-illuminated mode and amber in illuminated mode.

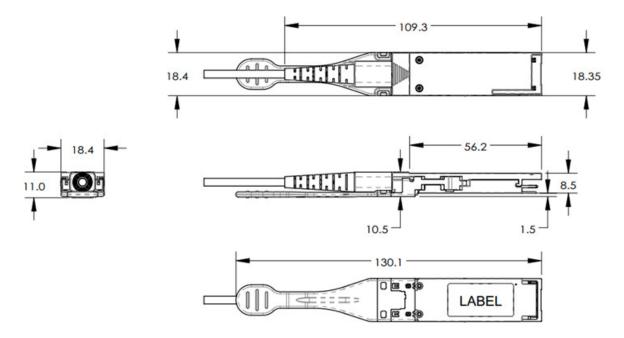



Figure 5 – Quadwire® with Connectivity Diagnostics® mechanical drawing

| Cable Mechanical Specifications                                           | Min | Typical | Max | Units |
|---------------------------------------------------------------------------|-----|---------|-----|-------|
| Minimum bend radius                                                       | 60  |         |     | mm    |
| Minimum bend radius within 100 mm of the Quadwire <sup>®</sup> module end | 105 |         |     | mm    |
| Diameter                                                                  | 3.0 | 3.3     | 3.6 | mm    |

| Insertion, Extraction and Retention<br>Forces | Min | Max  | Units   | Notes                |
|-----------------------------------------------|-----|------|---------|----------------------|
| Cable Proof (Tensile) Test (0°)               |     | 44.0 | Newtons |                      |
| Cable Proof (Tensile) Test (90°)              |     | 33.0 | Newtons |                      |
| Impact Test                                   |     | 8    | Cycles  | 1.5m drop            |
| Flex Test                                     |     | 8.9  | Newtons |                      |
| Twist Test                                    |     | 13.0 | Newtons |                      |
| Module retention                              | 90  | N/A  | Newtons | No damage below 90N  |
| Host Connector Retention                      | 180 | N/A  | Newtons | No damage below 180N |



Figure 6 – Quadwire<sup>®</sup> production-level product label

### XI. References

- 1. INF-8438i Specification for QSFP (Quad Small Formfactor Pluggable) Transceiver, Rev 1.0, November 2006
- 2. SFF-8636 Specification for QSFP+ Copper and Optical Transceiver, Rev 2.7, January 2016
- 3. Application Note AN-2075: Quadwire<sup>®</sup> EEPROM Mapping, Rev E
- 4. Application Note AN-2158: Finisar's Connectivity Diagnostics<sup>™</sup> for Active Optical Cables

### XII. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 <u>sales@finisar.com</u> <u>www.finisar.com</u>