

Product Specification

400GBASE-DR4 QSFP-DD Optical Transceiver Module

FTCD4523E3PCM

PRODUCT FEATURES

- Hot-pluggable QSFP-DD type 2 form factor
- Supports 425Gb/s aggregate bit rate
- Power dissipation <8W
- RoHS-6 compliant
- Case temperature range 0°C to +70°C (c-temp)
- Single 3.3V power supply
- Aligned with IEEE 802.3bs
- 4x100Gb/s PAM4 serial lanes
- 8x50G PAM4 retimed electrical interface
- Parallel MPO12 APC receptacle
- I2C management interface

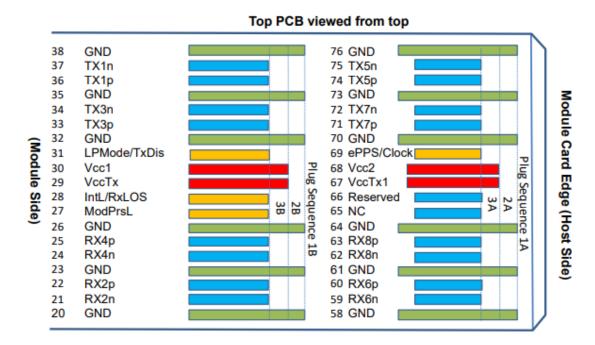
APPLICATIONS

- 400G DR4 applications with FEC
- 100GbE breakout applications

Finisar's FTCD4523E3PCM DR4 QSFP-DD transceiver modules are designed for use in 400 Gigabit Ethernet links on up to 500m of single-mode fiber. They are compliant with the QSFP-DD MSA, and portions of IEEE P802.3bs. Digital diagnostic functions are available via the I2C interface specified in Common Management Interface Specification Rev. 4.0 and Finisar Application Note AN-2189. The transceiver is RoHS-6 compliant per Directive 2011/65/EU4 and Finisar Application Note AN-2038⁵.

PRODUCT SELECTION

FTCD4523E3PCM (Application select 1 set to 4x100G mode, Application select 2 set to 400G mode)
FTCD4523E3PCM-4A (Application select 1 set to 400G mode, Application select 2 set to 4x100G mode)


E: Ethernet protocol
P: Pull-tab type release

C: Commercial temperature range

M: MPO 12 APC receptacle

^{*}See Section XI for more on choosing the appropriate mode for application Select 1

I. Pin Descriptions

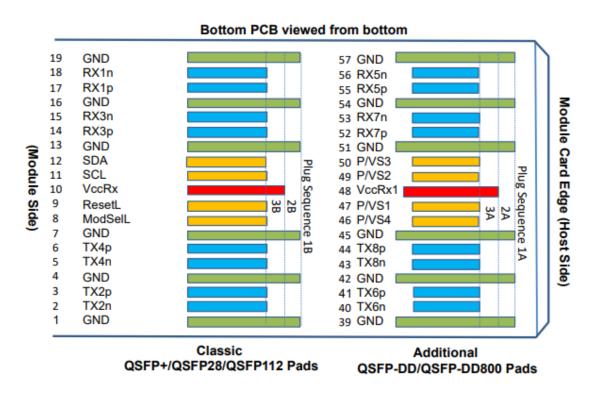


Figure 1 – QSFP-DD -compliant 76-pin connector (per QSFP-DD MSA)

Pad	Logic	Symbol	Description	Plug Sequence ⁴	Notes
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	<u> </u>
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4	OIII.E I	GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7	OIVIL 1	GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	<u> </u>
9	LVTTL-I	ResetL	Module Reset	3B	
10	LVIILI	VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS-I/O	SCL	TWI serial interface clock	3B	
12	LVCMOS-I/O	SDA	TWI serial interface data	3B	
13	EVOIVIOU-I/O	GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	'
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16	OIVIL-O	GND	Ground	1B	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	'
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19	OIVIL-O	GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	'
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23	OIVIL-O	GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26	CIVIL-O	GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	1
28	LVTTL-O	IntL/ RxLOS	Interrupt/optional RxLOS	3B	
29	LVIIL-O	VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1	+3.3V Power supply transmitter	2B	2
31	LVTTL-I	LPMode/	Low Power mode/optional TX Disable	3B	2
31	LVIIL-I	TxDis	Low Fower mode/optional 1x Disable	36	
32		GND	Ground	1B	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	3B	1
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35	OIVIL-I	GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	-
37	CML-I	Tx1n	Transmitter Inverted Data Input Transmitter Inverted Data Input	3B	
38	OIVIL-I	GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	<u>'</u>
41	CML-I	Tx6p	Transmitter Non-Inverted Data Input	3A	
42	OIVIL-I	GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	-
44	CML-I	Tx8p	Transmitter Inverted Data Input Transmitter Non-Inverted Data Input	3A	
45	CIVIL-I	GND	Ground	1A	1
45		GND	Ground	TA	T

Pad	Logic	Symbol	Description	Plug Sequence ⁴	Notes
46	LVCMOS /CML-I	P/VS4	Programmable/Module Vendor Specific 4	3A	5
47	LVCMOS /CML-I	P/VS1	Programmable/Module Vendor Specific 1	3A	5
48		VccRx1	3.3V Power Supply	2A	2
49	LVCMOS /CML-O	P/VS2	Programmable/Module Vendor Specific 2	3A	5
50	LVCMOS /CML-O	P/VS3	Programmable/Module Vendor Specific 3	3A	5
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A	
56	CML-O	Rx5n	Receiver Inverted Data Output	3A	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Inverted Data Output	3A	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Inverted Data Output	3A	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A	
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2A	2
69	LVCMOS-I	ePPS/Clock	1PPS PTP clock or reference clock input	3A	6
70		GND	Ground	1A	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1

Note 1: QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane. Each connector Gnd contact is rated for a maximum current of 500 mA. Note 2: VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Supply requirements defined for the host side of the Host Card Edge Connector are listed in Table 10. For power classes 4 and above the module differential loading of input voltage pads must not result in exceeding contact current limits. Each connector Vcc contact is rated for a maximum current of 1500 mA.

Note 3: Reserved and no Connect pads recommended to be terminated with 10 k Ω to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module.

Note 4: Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A and 1B will then occur simultaneously, followed by 2A and 2B, followed by 3A and 3B.

Note 5: Full definitions of the P/VSx signals currently under development. On new designs not used P/VSx signals are recommended to be terminated on the host with 10 k Ω .

Note 6: ePPS/Clock if not used recommended to be terminated with 50 Ω to ground on the host.

Figure 2 – Pad Function Definition (per QSFP-DD MSA)

II. Absolute Maximum Ratings

Module performance is not guaranteed beyond the operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T_{S}	-40		+85	°C	
Case Operating Temperature	T_{OP}	0		+70	°C	c-temp
Relative Humidity	RH	15		85	%	1
Receiver Damage Threshold, per Lane	P_{Rdmg}	5			dBm	

Notes:

1. Non-condensing.

III. Electrical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Supply Current	Icc			2.55	A	
Module total power	P			8	W	1
Transmitter						
Signaling rate per lane		26.5	$625 \pm 100 \text{ p}$	pm.	Gbd	
Differential data input voltage per lane	Vin,pp,diff	900			mV	2
Differential input return loss		II	quation (83 EEE802.3b	m	dB	
Differential to common mode input return loss			quation (83 EEE802.3b		dB	
Differential termination mismatch				10	%	
Module stress input test			er 120E.3.4 EEE802.3b			3
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common mode voltage		-350		2850	mV	4
Receiver						
Signaling rate per lane		26.5	625± 100 p	pm.	Gbd	
AC common-mode output voltage (RMS)				17.5	mV	
Differential output voltage				900	mV	
Near-end ESMW (Eye symmetry mask width)		0.265			UI	
Near-end Eye height, differential (min)		70			mV	
Far-end ESMW (Eye symmetry mask width)		0.2			UI	
Far-end Eye height, differential (min)		30			mV	
Far-end pre-cursor ISI ratio		-4.5		2.5	dB	
Differential output return loss		Per equation 83E-2 IEEE802.3bm				
Common to differential mode		Per equation 83E-3				
conversion return loss		I	EEE802.3b	m		
Differential termination mismatch				10	%	
Transition time (min, 20% to 80%)		9.5			ps	·
DC common mode voltage (min)		-350		2850	mV	4

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. With the exception to 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 3. Meets specified BER
- 4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

IV. Optical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Meets 400GBASE-DR4 as being defined by IEEE P802.3bs

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling rate (each lane (range)		5	3.125 ± 100 j	ppm	GBd	
Modulation format			PAM4			
Lane wavelength (range)			1304.5 to 131	7.5	nm	
Side-mode suppression ratio (SMSR)		30			dB	
Average launch power, each lane				4	dBm	
Average launch power, each lane		-2.9			dBm	1
Outer Optical Modulation Amplitude		-0.8		4.2	dBm	2
(OMAouter), each lane		-0.8		4.2		
Launch power in OMAouter minus		-2.2			dBm	
TDECQ, each lane		-2.2				
Transmitter and dispersion eye closure				3.4	dB	
for PAM4 (TDECQ), each lane				5.4		
Average launch power of OFF				-15	dBm	
transmitter, each lane				-13		
Extinction ratio		3.5			dB	
RIN _{21.4} OMA				-136	dB/Hz	
Optical return loss tolerance				21.4	dB	
Transmitter reflectance				-26	dB	3

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDECQ < 1.4 dB, the OMAouter (min) must exceed this value
- 3. Transmitter reflectance is defined looking into the transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Receiver						
Signaling rate (each lane (range)		5	3.125 ± 100 j	ppm	GBd	
Modulation format			PAM4			
Lane wavelength (range)			1304.5 to 131	7.5	nm	
Damage threshold, each lane			5		dBm	1
Average receive power, each lane				4	dBm	
Average receive power, each lane		-5.9			dBm	2
Receive power (OMAouter), each lane				4.2	dBm	
Receiver reflectance				-26	dB	
Receiver sensitivity (OMAouter), each lane				-4.4	dBm	3
Stressed receiver sensitivity (OMAouter), each lane				-1.9	dBm	4
Conditions of stressed receiver sensitivit	y test:					
Stressed eye closure for PAM4 (SECQ), lane under test		3.4			dB	5
OMAouter of each aggressor lane		4.2			dBm	

Notes:

- 1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 2. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 3. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with SECO of 0.9 dB.
- 4. Measured with conformance test signal at TP3 (see 124.8.9) for the BER specified in 124.1.1.
- 5. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combined)	BR			425	Gb/s	1
Bit Error Ratio	BER			2.4E-4		2
Maximum Supported Distances						
Fiber Type						
SMF per G.652	Lmax1			500	m	

Notes:

- 1. Supports 400GBASE-DR4 per IEEE P802.3bs.
- 2. As defined by IEEE P802.3bs.

VI. Environmental Specifications

Finisar FTCD4523E3PCM DR4 QSFP-DD transceivers have an operating case temperature range of 0°C to +70°C.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		+70	°C	
Storage Temperature	T_{sto}	-40		+85	°C	

VII. Regulatory Compliance

Finisar FTCD4523E3PCM DR4 QSFP-DD transceivers are Class 1 Laser Products. They are certified per the following standards:

Agency	Standard
FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 56
UL	IEC 60825-1:2014 IEC 60825-2: 2004+A1+A2
UL	IEC 62368-1:2018
UL/CSA	CLASS 3862.07 CLASS 3862.87
	FDA/CDRH UL UL

Copies of the referenced certificates are available at Finisar Corporation upon request.

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

VIII. Digital Diagnostics Functions

FTCD4523E3PCM DR4 QSFP-DD transceivers support the I2C-based diagnostics interface specified by the specified in Common Management Interface Specification Rev. 4.0. See also Finisar Application Note AN-2189.

IX. Memory Contents

Per QSFP-DD MSA Specification¹. See Finisar Application Note AN-2189.

X. Mechanical Specifications

Finisar FTCD4523E3PCM DR4 QSFP-DD transceivers are compatible with the QSFP-DD Type 2 Specification for pluggable form factor modules.

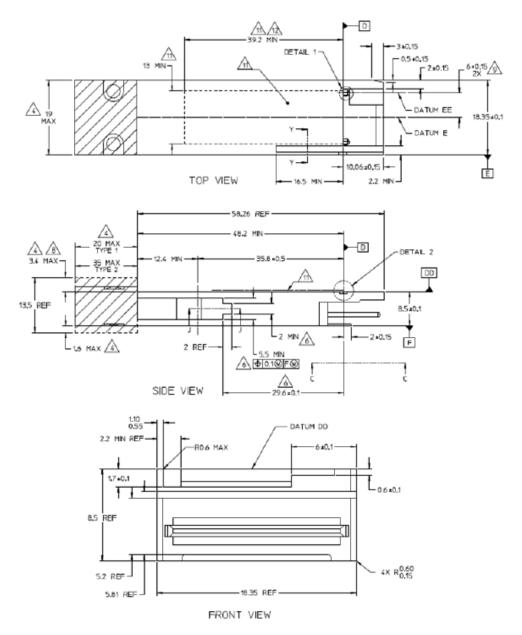
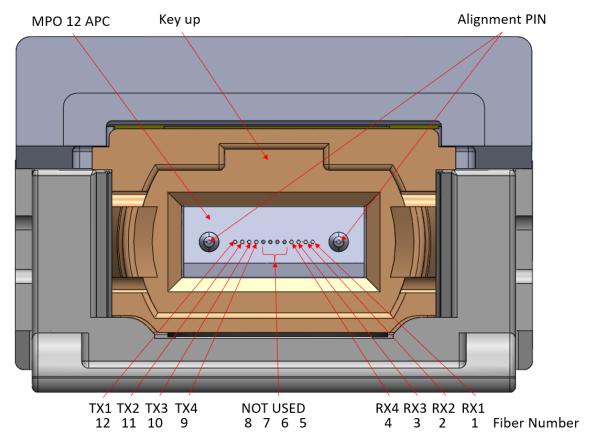



Figure 2. FTCD4523E3PCM Mechanical Dimensions.

Outside View Of Receptacle MPO 12 APC

Figure 3. Outside view of MPO12 APC

Figure 4. Product Label

XI. Note on Application Select 1

Per the Common Management Interface Specification (CMIS) revision 4.0/5.x, the transceiver has functional modes that are advertised in the Application Select (AppSel) section of the EEPROM. The user can choose between modes that are advertised here through the host I2C interface. On power-up or software reset, the default mode will be the one defined in **AppSel 1**. This optical transceiver can have AppSel 1 defined as 4x100G mode (part number FTCD45x3E3PxM) or 400G mode (part number FTCD45x3E3PxM-4A). **The choice between these two modes for AppSel 1 is important** as some host switching/routing equipment that are common in the networking industry may expect 400G mode instead of 4x100G mode as the default (or vice versa). If the host does not recognize the default mode of the transceiver, it may fail to properly initialize the transceiver and not allow it to function. If the wrong transceiver based on AppSel 1 is purchased, it would take a change on the transceiver by Coherent to redefine AppSel 1/AppSel 2 to reverse 4x100G and 400G modes. As such, it is advisable to check prior to ordering with the manufacturer of the host equipment to identify the mode that it expects to see on plug-in of a QSFP-DD 400G-DR4 transceiver.

To contact a Coherent representative for more information, <u>click here</u> to go to the product page on the Coherent web site and submit a Product Inquiry (tab on the bottom of the page).

XII. References

- 1. QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver
- 2. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.
- 3. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 4. IEEE 802.3bs, 400GAUI-8 Interface.
- 5. AN-2189, "AN-2189 400G DR4 QSFP-DD EEPROM Map REV A1"
- 6. CMIS4.0 and 5.0

XIII. For More Information

Coherent Corp.
375 Saxonburg Boulevard
Saxonburg, PA 16056
sales@coherent.com
www.coherent.com