BPDV3320R

The BPDV3320R balanced photodetector consists of two optimized 70 GHz waveguide-integrated photodiodes on a single chip. As a single balanced photodetector, this configuration ensures an excellent uniformity of the paired photodiodes and is biased via an integrated biasing network. Due to the optimized combination of waveguide and photodiode design, even at high optical powers, a linear frequency response can be guaranteed at both 1310 nm as well as 1550 nm. The integrated 50Ω termination allows an excellent match of the electrical output signal.

Tailored configurations are available, such as BPDV dual pair and quad sets, including connector customization and fiber-matching to enable coherent detection.

FEATURES

- 70 GHz typical bandwidth
- Unsurpassed high-power capability
- Detection of 64 Gbaud x-QAM signals
- Support of 1310 nm and 1550 nm
- Unique on-chip biasing network

APPLICATIONS

- Transmission systems up to 1 Tbps
- Coherent test and measurement systems
- Research and development systems
- Microwave photonics

Product Selection

BPDV3320Rx-Vy-zz

Rx	R	single balanced detector			
	RM	= dual pair of balanced detectors			
	RQ	= quad set of balanced detectors			
Vy	VF	female V-connector (standard)			
	VM	male V-connector			
ZZ	FP	FC/PC connector (standard)			
		Other available choices are: FA-FC/APC			

Pin Descriptions

# Pin	Symbol	Description	
3	VPD2	PD2 supply input	
2/15	GND	Ground = case ground	
14	VPD1	PD1 supply input	

Block Diagram

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the datasheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Photodiode Bias Voltage	V _{PD1}		0		4.0	V
	V _{PD2}		-4.0		0	
Maximum Average Optical Input	P _{opt}	Continuous wave (cw) or			16	dBm
Power	Орг	40 Gbps NRZ, per channel				
Maximum Peak Optical Input Power	P _{peak}	Pulse < 25 ps or RZ at 40 Gbps,			19	dBm
	peak	per channel				
Electrostatic Discharge (ESD)	V _{ESD}	C = 100 pF, R = 1.5 kΩ HBM	-250		+250	V
Fiber Bend Radius			16			mm

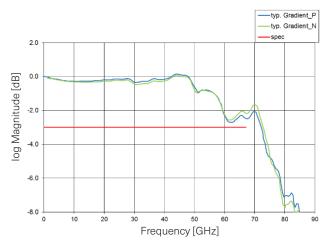
Environmental Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Case Temperature	T		0		75	°C
Relative Humidity	RH	Non-condensing	5		85	%
Storage Temperature	T _{sto}		-40		85	°C

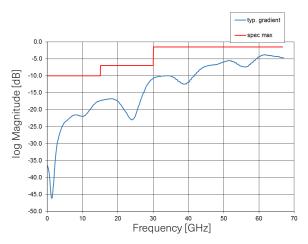
Operating Conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Wayslandth Dange)		1300		1330	n no
Operating Wavelength Range	\ \ \		1525		1575	nm
Average Optical Input Power Range	P _{OPT}	For each diode	-20		10	dBm
Dhotodiada Diag Valtaga	V _{PD1}		2.0	2.8	3.3	\/
Photodiode Bias Voltage	V _{PD2}		-3.3	-2.8	-2.0	V

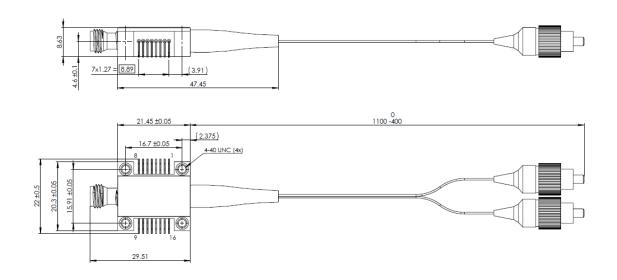
Electro-Optical Specifications 1


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Photodiode DC Responsivity	R	1310 nm	0.35	0.45		A/W
		1550 nm optimum polarization	0.45	0.6		
Imbalance of Responsivity	Imb	Imb = $ 10*\log 10(R_{PD1}/R_{PD2}) $		0.15	0.5	dB
Polarization-Dependent Loss	PDL	1310 nm		0.6	0.9	dB
		1550 nm		0.4	0.8	
Photodiode Dark Current	dark			5	200	nA
Optical Return Loss	ORL	1550 nm	27			dB
3 dB Cut-off Frequency ²	f _{3dB}		59	69		GHz
RF Common Mode Rejection Ratio	CMRR	CMRR = $20*log10 (S_{21} - S_{31})/(S_{21} + S_{31}) $		15		dB
Output Reflection Coefficient	S ₂₂	015 GHz		-15	-10	dB
		1530 GHz		-10	-7	
		3067 GHz		-2.6	-1.5	
Skew					2	ps
Skew (Inter Detector Module)		RM & RQ version			10	ps

^{1.} λ = 1550 nm, V_{PD} = ±2.8 V, T = 25 °C, P_{OPT} = -3 dBm. 2. Measured using Agilent 86030A 67 GHz Lightwave component analyzer.


Typical Performance

O/E Bandwidth Log Magnitude Plot


Typical s21Plot with heterodyne system up to 90GHz

S22 Log Magnitude Plot

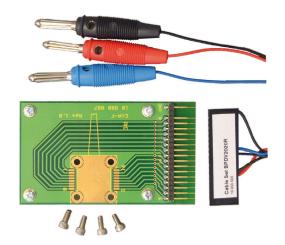
Typical s22 Plot measured with LCA limited to 67GHz

Mechanical Specifications

All dimensions in mm

Parameter	Description
Signal fiber PD1	SMF-28, 900 µm loose buffer, white
Signal fiber PD2	SMF-28, 900 µm loose buffer, yellow

Accessories


A. Evaluation Kit

The kit serves as an easy-to-use utility to characterize the balanced photodetector under laboratory conditions and consists of a printed circuit board (PCB), four screws to establish removable connectivity between photodetector and board, and one DC cable to ensure the photodiode bias voltage.

Ordering Information

EVA-BPDV

Evaluation board for all balanced detectors; includes 1x PCB, 1x DC cable set, and 4x socket-head screws 4-40 UNC.

B. Photodetector Power Supply

We recommend usage of our individually accessible photodetector power supply (PPS), in particular for optimized performance at high optical input levels. As a portable device, it provides a stable bias voltage supply and a front display for review of photocurrent.

Ordering Information

PPS-03-B

Photodetector power supply for all balanced detectors; includes 2x PPS, 1x cable set B-type. The PPS is compatible with EVA board (specified scheme applicable to RM & RQ version). PPS units include 2x 1.5 V batteries.

Notes

Any trademarks used in this document are properties of their respective owners. Coherent reserves the right to make changes without notice.

