PowerLine E Series

High-Performance DPSS Laser Markers

PowerLine E Series are Class 4 laser marking sub-systems ideal for applications where mark quality, aesthetics and legibility are critical. They combine a diode-pumped, solid-state laser (with infrared, green, or ultraviolet output), with high-performance scanning and beam delivery optics, drive electronics, and powerful control software to yield a fast, flexible and accurate marking platform. The included Visual Laser Marker (VLM) applications software enables mark artwork to be transferred directly from a computer to the marker, and supports a number of sophisticated functions, including marking-on-the-fly and 3D marking, and marking of variable data (bar codes, serial numbers).

FEATURES

- Compact design for easy integration
- Water/air cooling
- Precision optics for superior mark quality
- Powerful VLM marking software
- Control by PC, PLC, or fieldbus
- Versatile configuration options including optical z-axis, internal power sensor, positioning lasers

APPLICATIONS

- Semiconductor IC and Wafer Marking
- Organics and Glass Marking
- Marking-on-the-Fly (conveyor belt or rotary axis)
- SmartMap3D Freeform Marking
- High-Precision Marking with Vision System

Specifications	$\begin{aligned} & \text { PL E } 30 \\ & \text { (ITX) } \end{aligned}$	$\begin{aligned} & \text { PL E } 40 \\ & \text { (ITX) } \end{aligned}$	$\begin{gathered} \text { PLE } 12 \\ \text { SHG (ITX) } \end{gathered}$	$\begin{gathered} \text { PLE } 20 \\ \text { SHG (ITX) } \end{gathered}$	$\begin{gathered} \text { PLE E } 25 \\ \text { SHG (ITX) } \end{gathered}$	$\begin{gathered} \text { PL E } 20 \\ \text { THG (ITX) } \end{gathered}$
Laser Type	DPSS					
Wavelength (nm)	1064	1064	532	532	532	355
Average CW Power (W)	25	40	-	-	-	-
Average Power (W)	$\begin{gathered} 20 \\ \text { (at } 60 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { (at } 60 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 6 \\ \text { (at } 50 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 12 \\ \text { (at } 50 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 18 \\ \text { (at } 50 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 2 \\ \text { (at } 15 \mathrm{kHz} \text {) } \end{gathered}$
Pulse Energy (mJ)	$\begin{gathered} 0.36 \\ \text { (at } 60 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 0.60 \\ \text { (at } 60 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 0.12 \\ \text { (at } 50 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 0.24 \\ \text { (at } 50 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 0.36 \\ \text { (at } 50 \mathrm{kHz} \text {) } \end{gathered}$	$\begin{gathered} 0.13 \\ \text { (at } 15 \mathrm{kHz} \text {) } \end{gathered}$
Pulse Stability (\% rms)	3	3	2	2	2	8
Frequency Range (kHz)	$\begin{gathered} \mathrm{CW}, \\ 0 \text { to } 200 \end{gathered}$	$\begin{gathered} \text { CW, } \\ 30 \text { to } 200 \end{gathered}$	5 to 200	15 to 200	15 to 200	15 to 100
Pulse Width (ns)	$\begin{gathered} 40 \\ \text { (at } 60 \mathrm{kHz} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \text { (at } 60 \mathrm{kHz} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \text { (at } 50 \mathrm{kHz} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \text { (at } 50 \mathrm{kHz} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \text { (at } 50 \mathrm{kHz} \text {) } \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \text { (at } 15 \mathrm{kHz} \text {) } \end{gathered}$
M ${ }^{2}$	2 to 4	2 to 4	≤ 1.5	≤ 1.5	≤ 1.5	≤ 1.5
Beam Diameter (mm)	3.4 ± 0.4	3.3 ± 0.4	1.6 ± 0.2	2.5 ± 0.3	2.7 ± 0.4	0.55
Cable Laser Head - Supply Unit (m)	5 (optional: 3)					
Weight (kg) Laser Head Supply Unit Water/Air Chiller		Power	ne E 40 (ITX):	5 , all other m	els: 45	
DPSS Laser Type	Vanadate					
Cooling	Water-air or water-water cooling. Ambient operating temperature: +15 to $+35^{\circ} \mathrm{C}$					
Scanners	Range of scanners for general marking, on-axis alignment, high precision marking					
Optical Z-Axis	Yes (option)					
Marking Field Size	Between $60 \mathrm{~mm} \times 60 \mathrm{~mm}$ and to $600 \mathrm{~mm} \times 600 \mathrm{~mm}$ depending on f-Theta objectiveand wavelength					
Positioning Help Laser	Optional for 1064 nm and 532 nm models					
Physical Dimensions	Physical dimensions and working distance of the laser marker depend on the detailed configuration. Please refer to the technical drawing.					
Mounting of Laser Marker	Horizontal. Optionally, other mounting directions possible on demand.					
PC	Intel Core i3, 3.6 GHz, 256 GB SSD, single-board PC integrated into supply unit					
Supply Unit	19" rack mount unit, height: 3 rack units					
Water-Air Chiller	19" rack mount unit, height: 6 rack units (PowerLine E 40: 7 rack units)					
Water-Water Chiller	19" rack mount unit, height: 6 rack units					

Specifications	$\begin{gathered} \text { PL E } 30 \\ \text { (ITX) } \end{gathered}$	$\begin{gathered} \text { PLE } 40 \\ \text { (ITX) } \end{gathered}$	PLE 12 SHG (ITX)	$\begin{gathered} \text { PLE 20 } \\ \text { SHG (ITX) } \end{gathered}$	$\begin{gathered} \text { PL E } 25 \\ \text { SHG (ITX) } \end{gathered}$	$\begin{gathered} \text { PLE 20 } \\ \text { THG (ITX) } \end{gathered}$
Interfaces PLC Control PC Control ${ }^{1}$ Fieldbus Control ${ }^{3}$	Parallel interface (digital I/Os). Encoder devices can be connected to differential I/Os. LAN (TCP/IP), RS-232² Profibus DP, Profinet IO					
Variable Data	Keyboard input, local file (lot file), barcode reader, via LAN (TCP/IP) ${ }^{1}$, Matrix objects					
Standard Software	Visual Laser Marker (VLM), Visual Marking Controller (VMC2), Laser Console,RCU.exe					
Marking Objects	Vector graphics, text, logos, ring, bitmap, banding					
Barcodes	GS1 DataBar, Code 39, Code 128, EAN8, EAN13, UPC-A, UPC-E, BookLan and others					
2D Codes	ECC200, Code 49, Micro-PDF417 and other data matrix and QR codes					
Optional Software Features	MJC (Marker Job Control), HK (Host Coupling), Marking-on-the-Fly (MoF), SmartMap3D, CAD Extension, AI, PDF and PS Import, SECS/GEM					
Operating System	Windows 10					
Certificates	PowerLine E laser markers comply with the following international standards: EN 60825-1:2014, EN 55011:2009/A1:2010, EN 61000-6-4:2007, EN 61000-6-2:2005, EN 61000-3-2:2014, EN 61000-3-3:2013, 47 CRF Part 18 ICES-003 Issue 4:2004, CDRH (radiation) standard.					

Notes:

1. Requires Host Coupling HK, Marker Job Control (MJC) or SECS/GEM software feature.
2. Requires an RS-232-to-USB-adapter.
3. The fieldbus interface is provided by a fieldbus coupler. The fieldbus coupler is connected to the supply unit by Fast Ethernet connection.

MECHANICAL SPECIFICATIONS

PowerLine E 30 (ITX), PowerLine E 12 SHG (ITX) / E 20 SHG (ITX), PowerLine E 20 THG (ITX), cable connected at rear of laser head

MECHANICAL SPECIFICATIONS

PowerLine E 30 (ITX), PowerLine E 12 SHG (ITX) / E 20 SHG (ITX), PowerLine E 20 THG (ITX), cable connected at bottom of laser head

Front View

MECHANICAL SPECIFICATIONS

PowerLine E 40 (ITX) and PowerLine E 25 SHG (ITX), cable connected at rear of laser head

MECHANICAL SPECIFICATIONS

PowerLine E 40 (ITX) and PowerLine E 25 SHG (ITX), cable connected at bottom of laser head

