LMA Fiber Laser Building Blocks

Advances in Fiber Devices LASE2005

Jan 2005

Outline

- Yb-doped fiber & gain-blocks
 - Progress on standard LMA fibers
 - LMA fiber Bragg gratings and couplers
 - Pump options (bars and single emitters)
- Recent results on monolithic LMA lasers/amplifiers
- Er:Yb-doped fibers at 1550nm
 - Progress on fibers and recent results
- Tm-doped fibers at 2μm
 - Progress on fibers and recent results
- Conclusions

Update on Yb-doped LMA fibers

- ~10 standard LMA fibers have been introduced
 - ~30μm core diameter is largest "standard" to date
 - Capable of good beam quality in many practical applications
 - However, many interesting things are being done with 20µm core
- Custom fibers
 - ~50µm core has received a lot of attention
 - Whether this can deliver good beam quality under practical deployment conditions remains to be seen
 - Custom up to ~200μm core
 - New waveguide designs (LFM)

Yb-doped LMA "Standard" fibers

20μm core, 0.06NA
V~3.7 at 1080nm
Core supports two modes
Easy to deliver good beam quality
Large cladding enables various pump options

20/400 fiber is capable of very high power

What does it take to go from free space to monolithic LMA modules?

Photosensitive LMA fibers for Gratings

- Photosensitive fiber has to be well matched to By-doped
 - Low NA (~0.06) and high photosensitivity are very difficult to achieve simultaneously
 - Requires careful optimization of the fiber composition
- For low splice loss and low inter-modal excitation
- Stable gratings at high power

Characterization of the gratings can be difficult

Due to cladding light and mode coupling

LMA fiber Gratings and LMA lasers

20/400 module with optimized coil f

High Power, Narrow linewidth lasers ~120W, 0.055nm linewidth

High Power LMA Combiners Options

- A flexible pump technology that is compatible with
 - 105/125, 200/220 and 400/440 delivery fibers
- Large, 400µm cladding makes this technology compatible with many pump options
 - Including diode bars and stacks
 - Typically delivered with 200 and 400μm fibers
- Also allows for pump redundancy

www nufern com

Some examples of available pump options

Input Fibers to the Combiner (core/clad)	Output Fiber (diameter and NA)	Typical (max) Number of Input fibers	Diode Pump Technology	Typical Power per Leg	Total Pump Power
105/125 0.22NA	400μm 0.46NA	19 (42)	pigtailed single emitter	3-5W	95W (180W)
200/220 0.22NA	400μm, 0.46NA	7 (7)	fiber coupled diode bars	10-50W	70-350W
400/440 0.22NA	400μm, 0.46NA	3 (3)	Fiber coupled bars and stacks	30-200W	90-600W

Flexibility in wavelength 915, 940, 975nm

High Power Coupler Test Data

High Power Coupler Test Data

Data Courtesy F. Gonthier, ITF

Recent Results on monolithic LMA lasers and amplifiers

Recent results on grating based lasers

- Grating based cavities are desirable for a number of reasons
 - Efficient, no realignment, robust
- Provide extra degree of **wavelength** and **linewidth** control
 - − The same fiber can operate ~1030-1120nm
 - Just change the pair of gratings
 - Wavelength and linewidth stability is much better
 - Critical for non-linear frequency doubling
 - Also for pumping solid state lasers

High Power Linear Polarized Laser

- M2 ~ 1.1
- Linewidth ~ 0.5nm
- PER ~ 19dB

High power **1030nm** Laser (20/400)

Output power **121.5W**Coupled pump power 177W
Pump getting thru 24.6W
Lasing wavelength 1032nm
Spectral linewidth 0.15nm
Noise 0.7%

Linear Polarized Lasers

Linear Polarized Fiber Laser (1116nm)

www.nufern.com

1116nm ~2W o/p power

CW Second Harmonic Generation : 560-nm Output Power vs. 1120-nm Pump Power

Data Courtesy V. Karpov, MPB Communications Inc

PM-LMA Amplifiers based on 15/130 fiber

Input signal power 430mW
Output signal power 16.8W
Pump power 25.3W
Slope efficiency 68%
Signal wavelength 1047nm
M2 = 1.1
PER>16dB

Development of fibers for 1.5 and 2µm operation

State of the art Er: Yb-doped Fibers DATA Courtesy W. Torruellas, Fibertek Inc.

- PM-18/250 fiber
- Has delivered ~100 μJ pulses and P_{ave}~10 W
- 3 ns pulses, peak power > 30 kW ($\sim 65 \text{ J/cm2}$)
- Single mode output $(M2 \sim 1.1)$

Tm-doped fibers for 2µm operation

Tm-doped fiber laser: 40W CW pumped at 793nm

Australian Government
Department of Defence

Defence Science and Technology Organisation

DATA Courtesy G. Frith, DSTO

- High efficiency ~53% pump conversion
 - Lasing around ~1970nm pump at 793nm
 - Silica glass composition is optimised for high efficiency
 - Making use of Tm-ion cross relaxation process

Tm-doped fiber laser: ~40W output and 53% slope efficiency

Australian Government Department of Defence

Defence Science and Technology Organisation

Data Courtesy G. Frith, DSTO

Conclusion

- LMA fiber technology is now well established
 - Various fibers optimized for different applications
 - pulsed, CW, PM, etc
 - Repeatable fiber manufacturing
 - gives customers confidence to build products around the technology and move fiber lasers from R&D projects into manufacturing
 - Standard LMA fiber designs have encouraged development of LMA components (gratings, couplers, etc)
- Standard LMA modules being introduced based on these components

Acknowledgments

V. Karpov, MPB CommunicationsW. Torruellas, Fibertek IncG. Frith, DSTOF. Gonthier, ITF

NUFERN: V. Khitrov, A. Carter, U. Manyam, K. Tankala, D. Machewirth and J. Farroni

